


The idea for a cross-species sleep study came about when Van Savage was pondering biologica time scales for animals of different sizes. He kne that most biological times, such as gestation and lifespan, increase in length for organisms of increasing size. Just to be sure, he went to check the data and found that sleep times didn't fit the pattern: they actually decrease for larger animals. "Sleep scales the opposite of everything else-it was a completely different pattern than you see for other biological times," Savage says. "So that made me fascinated from the perspective that it's different. It was really weird, and the more I got into it, the more I realized that sleep is a fascinat ing subject." Savage asked Geoffrey West, an expert in biological scaling and his advisor, to join the investigation, and they began to read up on sleep literature.
One of the better-known sleep hypotheses they encountered holds that sleep gives rest to the body and brain. This idea has been met with skepticism because sleeping doesn't conserve much energy. The metabolism only slows 10 to 15 percent during sleep, and for humans, the energy saved from eight hours of sleep versus eight hours of sedentary wakefulness is roughly equivalent to the number of calories in a dinner roll. Another hypothesis says that sleep protects the brain from overheating. The idea was first propounded by Hippocrates around 400 BC, and while thermoregulatory theories have few living advocates of note, they still crop up in lists of potential explanations for sleep. Savage and West elegantly debunked the heating and coolWest elegantly debunked the heating and cool-
ing theory on the grounds that it didn't account for the drastically different sleep times observed in different animals. They speculated that if the theory were true, heating and cooling rates would depend on metabolism (which heats the brain) and brain size (the amount of brain being heated). Because both bear the same relation to body mass, then the ratio between them remains constant for all animals. The thermoregulatory theory would predict that the amount of wak
ing time, in which the metabolism would heat the brain, and sleeping time, in which the brain would cool, would remain constant for all mammals. Since the prediction flatly contradicted the observed differences in sleep times across species, Savage and West crossed the thermoregulatory sleep theory off their list.
Yet another sleep hypothesis holds that sleep's function is to repair damage in the body and/or brain. Cellular damage is a secondary effect of metabolism, which slowly harms the very cells it keeps alive. When a cell produces energy, it also releases free radicals-the infamous molecules that age cells and damage DNA. To find out whether sleep might serve to repair the damage wrought by metabolism, Savage and West looked at metabolic rates across species. According to Savage, one of the well-known facts of biologi-
"O peaceful Sleep! until from pain released I breathe again uninterrupted breath!
Ah, with what subtile meaning did the Greek Call thee the lesser mystery at the feast Whereof the greater mystery is death!"

- Henry Wadsworth Longfellow
cal scaling is that "smaller and hotter" animals generally live life at a faster pace than "larger and colder" ones. Rodents have quicker metabolisms han primates, which have quicker metabolisms than pachyderms. And since sleep times scale in reverse (pachyderms sleep less than primates, etc.), the researchers surmised that the amount of sleep an animal requires might well be dictated by some secondary effect of metabolism, such as the need for repair.
But how to tell if the repair occurs at the level of the body or the brain? The brain seemed a
likelier candidate than the body because neurons, unlike other cells, are not replaced when they die. It seemed reasonable, then, that the body would


