Hybrid Warfare and Challenges

By FRANK G. HOFFMAN

Lieutenant colonel Frank G. Hoffman, USMCR (Ret.), is a Research Fellow in the Center for Emerging Threats and Opportunities at the Marine Corps Combat Development Command.

The U.S. military faces an era of enormous complexity. This complexity has been extended by globalization, the proliferation of advanced technology, violent transnational extremists, and resurgent powers. America’s vaunted military might stand atop all others but is tested in many ways. Trying to understand the possible perturbations the future poses to our interests is a daunting challenge. But, as usual, a familiarity with history is our best aid to interpretation. In particular, that great and timeless illuminator of conflict, chance, and human nature—Thucydides—is as relevant and revealing as ever.

In his classic history, Thucydides detailed the savage 27-year conflict between Sparta and Athens. Sparta was the overwhelming land power of its day, and its hoplites were drilled to perfection. The Athenians, led by Pericles, were the supreme maritime power, supported by a walled capital, a fleet of powerful triremes, and tributary allies. The Spartan leader, Archidamius, warned his kinsmen about Athens’ relative power, but the Spartans and their supporters would not heed their king. In 431 BCE, the Spartans marched through Attica and ravaged the Athenian country estates and surrounding farms. They encamped and awaited the Athenian heralds and army for what they hoped would be a decisive battle and a short war.

The scarlet-clad Spartans learned the first lesson of military history—the enemy gets a vote. The Athenians elected to remain behind their walls and fight a protracted campaign that played to their strengths and worked against their enemies. Thucydides’ ponderous tome on the carnage of the Peloponnesian War is an extended history of the operational adaptation of each side as they strove to gain a sustainable advantage over their enemy. These key lessons are, as he intended, a valuable “possession for all time.”

In the midst of an ongoing inter-Service roles and missions review, and an upcoming defense review, these lessons need to be underlined. As we begin to debate the scale and shape of the Armed Forces, an acute appreciation of history’s hard-earned lessons will remain useful. Tomorrow’s enemies will still get a vote, and they will remain as cunning and elusive as today’s foes. They may be more lethal and more implacable. We should plan accordingly.

One should normally eschew simplistic metanarratives, especially in dynamic and nonlinear times. However, the evolving character of conflict that we currently face is best characterized by convergence. This includes the convergence of the physical and psychological, the kinetic and nonkinetic, and combatants and noncombatants. So, too, we see the convergence of military force and the interagency community, of states and nonstate actors, and of the capabilities they are armed with. Of greatest relevance are the converging modes of war. What once might have been distinct operational types or categorizations among terrorism and conventional, criminal, and irregular warfare have less utility today.

Current Strategic Thinking

The 2005 National Defense Strategy (NDS) was noteworthy for its expanded understanding of modern threats. Instead of the his-
torical emphasis on conventional state-based threats, the strategy defined a broadening range of challenges including traditional, irregular, terrorist, and disruptive threats. The strategy outlined the relative probability of these threats and acknowledged America’s increased vulnerability to less conventional methods of conflict. The strategy even noted that the Department of Defense (DOD) was “over invested” in the traditional mode of warfare and needed to shift resources and attention to other challengers.

While civil and intrastate conflicts have always had a higher frequency, their strategic impact and operational effects had little impact on Western military forces, and especially U.S. forces, which focused on the significantly more challenging nature of state-based threats and high-intensity conventional warfighting. This focus is partly responsible for America’s overwhelming military superiority today, measured in terms of conventional capability and its ability to project power globally. This investment priority and American force capabilities will have to change, however, as new environmental conditions influence both the frequency and character of conflict.

Subsequent to the strategy’s articulation, a number of U.S. and foreign analysts complimented DOD strategists for moving beyond a myopic preoccupation with conventional war. But these analysts have also identified an increased blurring of war forms, rather than the conveniently distinct categorizations found in the NDS. Yet the strategy itself did suggest that the most complex challengers of the future could seek synergies from the simultaneous application of multiple modes of war. The NDS explicitly admitted that the challenger categories could and would overlap and that “recent experience indicates . . . the most dangerous circumstances arise when we face a complex of challenges. Finally, in the future, the most capable opponents may seek to combine truly disruptive capacity with traditional, irregular, or catastrophic forms of warfare.”

This matches the views of many military analysts, who have suggested that future conflict will be multi-modal or multi-variant rather than a simple black or white characterization of one form of warfare. Thus, many analysts are calling for greater attention to more blurring and blending of war forms in combinations of increasing frequency and lethality. This construct is most frequently described as “hybrid warfare,” in which the adversary will most likely present unique combinational or hybrid threats specifically targeting U.S. vulnerabilities. Instead of separate challengers with fundamentally different approaches (conventional, irregular, or terrorist), we can expect to face competitors who will employ all forms of war and tactics, perhaps simultaneously. Criminal activity may also be considered part of this problem, as it either further destabilizes local government or abets the insurgent or irregular warrior by providing resources. This could involve smuggling, narcoterrorism, illicit transfers of advanced munitions or weapons, or the exploitation of urban gang networks.

A number of analysts have highlighted this blurring of lines between modes of war. They suggest that our greatest challenge in the future will not come from a state that selects one approach but from states or groups that select from the whole menu of tactics and technologies and blend them in innovative ways to meet their own strategic culture, geography, and aims. As Michael Evans of the Australian Defence Academy wrote well before the last Quadrennial Defense Review, “The possibility of continuous sporadic armed conflict, its engagements blurred together in time and...
space, waged on several levels by a large array of national and sub-national forces, means that war is likely to transcend neat divisions into distinct categories.”

Numerous scholars are now acknowledging the mixing likely in future conflicts. Colin Gray has admitted the one feature that “we can predict with confidence is that there is going to be a blurring, a further blurring, of warfare categories.” British and Australian officers have moved ahead and begun the hard work of drawing out implications and the desired counter-capabilities required to effectively operate against hybrid threats. The British have gone past American doctrine writers and already incorporated hybrid threats within their construct for irregular war. Australian military analysts remain on the front lines of inquiry in this area.

Theorists responsible for some of the most cutting edge thinking in alternative modes of war and associated organizational implications continue to explore the blurring of conflict types. John Arquilla, an expert in irregular warfare, has concluded that “[n]et-warworks have even shown a capacity to wage war toe-to-toe against nation-states—with some success. . . . The range of choices available to networks thus covers an entire spectrum of conflict, posing the prospect of a significant blurring of the lines between insurgency, terror, and war.”

Some research has been done on civil wars as hybrid conflicts. Other research focuses on the nature of the societies involved. But hybrid wars are much more than just conflicts between states and other armed groups. It is the application of the various forms of conflict that best distinguishes hybrid threats or conflicts. This is especially true since hybrid wars can be conducted by both states and a variety of nonstate actors. Hybrid threats incorporate a full range of modes of warfare, including conventional capabilities, irregular tactics and formations, terrorist acts that include indiscriminate violence and coercion, and criminal disorder. These multi-modal activities can be conducted by separate units, or even by the same unit, but are generally operationally and tactically directed and coordinated within the main battlespace to achieve synergistic effects in the physical and psychological dimensions of conflict. The effects can be gained at all levels of war. Thus, the compression of the levels of war is complicated by a simultaneous convergence of modes. The novelty of this combination and the innovative adaptations of existing systems by the hybrid threat is a further complexity. As one insightful student of war noted:

Hybrid forces can effectively incorporate technologically advanced systems into their force structure and strategy, and use these systems in ways that are beyond the intended employment parameters. Operationally, hybrid military forces are superior to Western forces within their limited operational spectrum.

Hybrid wars are not new, but they are different. In this kind of warfare, forces become blurred into the same force or are applied in the same battlespace. The combination of irregular and conventional force capabilities, either operationally or tactically integrated, is quite challenging, but historically it is not necessarily a unique phenomenon. The British faced a hybrid threat at the turn of the last century when the Boers employed Mauser rifles and Krupp field guns and outranged their red-clad adversary. Ultimately, the British adapted and ran down the Boer commandos. The fierce defense of Grozny by the Chechens is another potential hybrid case study. But both were bloody and protracted conflicts that arguably required more military resources and greater combat capabilities than classical counterinsurgencies and Field Manual 3–24, Counterinsurgency, would suggest.

Compound Wars

Historians have noted that many if not most wars are characterized by both regular and irregular operations. When a significant degree of strategic coordination between separate regular and irregular forces in conflicts occurs, they can be considered “compound wars.” Compound wars are those major wars that had significant regular and irregular components fighting simultaneously under unified direction. The complementary effects of compound warfare are generated by its ability to exploit the advantages of each kind of force and increase the nature of the threat posed by each kind of force. The irregular force attacks weak areas, compelling a conventional opponent to disperse his security forces. The conventional force generally induces the adversary to concentrate for defense or to achieve critical mass for decisive offensive operations.

One can see this in the American Revolution, when George Washington’s more conventional troops stood as a force in being for much of the war, while the South Carolina campaign was characterized by militia and some irregular combat. The Napoleonic era is frequently viewed in terms of its massive armies marching back and forth across Europe. But the French invasion of Spain turned into a quagmire, with British regulars contesting Napoleon’s control of the major cities, while the Spanish guerrillas successfully harassed his lines of communication. Here again, strategic coordination was achieved, but overall in different battle spaces. Likewise, the American Civil War is framed by famous battles at Chancellorsville, Gettysburg, Vicksburg, and Antietam. Yet partisan warfare and famous units like John Mosby’s 43rd Virginia Cavalry provided less conventional capabilities as an economy of force operation. T.E. Lawrence’s role as an advisor to the Arab revolt against the Ottomans is another classic case of compound war, which materially assisted General Edmund Allenby’s thrusts with the British Expeditionary Force against Jerusalem and Damascus. But here again, Lawrence’s raiders did not fight alongside the British; they were strategically directed by the British and supplied with advisors, arms, and gold only.

Vietnam is another classic case of the strategic synergy created by compound wars, posing the irregular tactics of the Viet Cong with the more conventional capabilities of the North Vietnamese army. The ambiguity between conventional and unconventional approaches vexed military planners for several years. Even long afterward, Americans debated what kind of war they actually fought and lost.

Hybrid Wars

As difficult as compound wars have been, the operational fusion of conventional and irregular capabilities in hybrid conflicts may be even more complicated. Compound wars offered synergy and combinations at the strategic level, but not the complexity, fusion, and simultaneity we anticipate at the operational and even tactical levels in wars where one or both sides is blending and fusing the full range of methods and modes of conflict into the battlespace. Irregular forces in cases of compound wars operated largely as a distraction or economy of force measure in a separate theater or adjacent operating area includ-
ing the rear echelon. Because it is based on operationally separate forces, the compound concept did not capture the merger or blurring modes of war identified in past case studies such as Hizballah in the second Lebanon war of 2006 or future projections.

Thus, the future does not portend a suite of distinct challengers into separate boxes of a matrix chart. Traditional conflict will still pose the most dangerous form of human conflict, especially in scale. With increasing probability, however, we will face adversaries who blur and blend the different methods or modes of warfare. The most distinctive change in the character of modern war is the blurred or blended nature of combat. We do not face a widening number of distinct challenges but their convergence into hybrid wars.

These hybrid wars blend the lethality of state conflict with the fanatical and protracted fervor of irregular warfare. In such conflicts, future adversaries (states, state-sponsored groups, or self-funded actors) will exploit access to modern military capabilities, including encrypted command systems, man-portable air-to-surface missiles, and other modern lethal systems, as well as promote protracted insurgencies that employ ambushes, improvised explosive devices (IEDs), and coercive assassinations. This could include states blending high-tech capabilities such as antisatellite weapons with terrorism and cyber warfare directed against financial targets.

Hybrid challenges are not limited to nonstate actors. States can shift their conventional units to irregular formations and adopt new tactics as Iraq’s fedayeen did in 2003. Evidence from open sources suggests that several powers in the Middle East are modifying their forces to exploit this more complex and diffused mode of conflict. We may find it increasingly perplexing to characterize states as essentially traditional forces, or nonstate actors as inherently irregular. Future challenges will present a more complex array of alternative structures and strategies as seen in the battle between Israel and Hizballah in 2006. The latter effectively fused militia forces with highly trained fighters and antitank guided missile teams into the battle. Hizballah clearly demonstrated the ability of nonstate actors to study and deconstruct the vulnerabilities of Western-style militaries and devise appropriate countermeasures.

The lessons learned from this confrontation are already cross-pollinating with other states and nonstate actors. With or without state sponsorship, the lethality and capability

The Second Lebanon War, 2006

In many details, the amorphous Hizballah is representative of the rising hybrid threat. The 34-day battle in southern Lebanon revealed some weaknesses in the posture of the Israel Defense Forces (IDF)—but it has implications for American defense planners, too. Mixing an organized political movement with decentralized cells employing adaptive tactics in ungoverned zones, Hizballah showed that it could inflict as well as take punishment. Its highly disciplined, well-trained distributed cells contested ground against a modern conventional force using an admixture of guerrilla tactics and technology in densely packed urban centers. Hizballah, like Islamic extremist defenders in the battles in Fallujah in Iraq during April and November of 2004, skillfully exploited the urban terrain to create ambushes and evade detection and to hold strong defensive fortifications in close proximity to noncombatants.

In the field, Israeli troops grudgingly admitted that the Hizballah defenders were tenacious and skilled. The organized resistance was several orders of magnitude more difficult than counterterrorism operations in the West Bank and Gaza Strip. More importantly, the degree of training, fire discipline, and lethal technology demonstrated by Hizballah were much higher.

Tactical combinations and novel applications of technology by the defenders were noteworthy. In particular, the antitank guided missiles employed by Hizballah against IDF armor and defensive positions, coupled with decentralized tactics, were a surprise. At the battle at Wadi Salouqi, a column of Israeli tanks was stopped in its tracks with telling precision. Hizballah’s antitank weapons include the Russian-made RPG–29, Russian AT–13 Metis, and AT–14 Kornet, which has a range of 3 miles. The IDF found the AT–13 and AT–14 formidable against their first line Merkava Mark IV tank. A total of 18 Merkavas were damaged, and it is estimated that antitank guided missiles accounted for 40 percent of IDF fatalities. Here we see the blurring of conventional systems with irregular forces and nontraditional tactics.

Hizballah even managed to launch a few armed unmanned aerial vehicles, which required the IDF to adapt in order to detect them. These included either the Iranian Mirsad–1 or Ababil–3 Swallow. These concerned Israeli strategists given their global positioning system–based navigational system, 450-kilometer range, and 50-kilogram explosive carrying capacity. There is evidence that Hizballah invested in signals intelligence and monitored IDF cell phone calls for some time, as well as unconfirmed reports that they managed to decrypt IDF radio traffic. The defenders also seemed to have advanced surveillance systems and very advanced night vision equipment. Hizballah’s use of C802 antiship cruise missiles against an Israeli missile ship represents another sample of what “hybrid warfare” might look like, which is certainly relevant to naval analysts as well.

Perhaps Hizballah’s unique capability is its inventory of 14,000 rockets. Many of these are relatively inaccurate older models, but thanks to Iranian or Syrian support, they possess a number of missile systems that can reach deep into Israel. They were used both to terrorize the civilian population and to attack Israel’s military infrastructure. Hizballah managed to fire over 4,100 rockets into Israel between July 12 and August 13, culminating with 250 rockets on the final day, the highest total of the war. Most of these were short range and inaccurate, but they achieved strategic effects both in the physical domain, by forcing Israel to evacuate tens of thousands of citizens, and in the media, by demonstrating their ability to lash back at the region’s most potent military.

Ralph Peters, who visited Lebanon during the fighting, observed that Hizballah displayed impressive flexibility, relying on the ability of cellular units to combine rapidly for specific operations or, when cut off, to operate independently after falling in on prepositioned stockpiles of weapons and ammunition. Hizballah’s combat cells were a hybrid of guerrillas and regular troops—a form of opponent that U.S. forces are apt to encounter with increasing frequency.

4 Exum, 5; see also Harik, 19–20.
of organized groups are increasing, while the incentives for states to exploit nontraditional modes of war are on the rise. This will require that we modify our mindsets with respect to the relative frequency and threats of future conflict. Irregular tactics and protracted forms of conflict are often castigated as tactics of the weak, employed by nonstate actors who do not have the means to do anything else. Instead of weakness, future opponents may exploit such means because of their effectiveness, and they may come to be seen as tactics of the smart and nimble. The future may find further evidence that hybrid threats are truly effective against large, ponderous, and hierarchical organizations that are mentally or doctrinally rigid.

Some analysts in Israel have all too quickly dismissed the unique character of Hizballah. These analysts blithely focus inward on the failings of the political and military leadership.15 This is a fatal disease for military planners, one that can only benefit future Hizballahs. As Winston Churchill so aptly put it, "However absorbed a commander may be in the elaboration of his own thoughts, it is sometimes necessary to take the enemy into account." So, too, must military historians and serious efforts to extract lessons from current history. Russell Glenn, a retired U.S. Army officer now with RAND, conducted an objective evaluation and concluded that the second Lebanon conflict was inherently heterogeneous and that attempts to focus on purely conventional solutions were futile. Moreover, as both Ralph Peters and I concluded earlier, this conflict is not an anomaly, but a harbinger of the future. As Glenn summed up in All Glory Is fleeting, “‘Twenty-first century conflict has thus far been typified by what might be termed as hybrid wars.’16

Implications

The rise of hybrid warfare does not represent the end of traditional or conventional warfare. But it does present a complicating factor for defense planning in the 21st century. The implications could be significant. John Arquilla of the Naval Postgraduate School has noted, “While history provides some useful examples to stimulate strategic thought about such problems, coping with networks that can fight in so many different ways—sparking myriad, hybrid forms of conflict—is going to require some innovative thinking.”19

We are just beginning this thinking. Any force prepared to address hybrid threats would have to be built upon a solid professional military foundation, but it would also place a premium on the cognitive skills needed to recognize or quickly adapt to the unknown.20 We may have to redouble our efforts to revise our operational art. We have mastered operational design for conventional warfare, and recently reinvigorated our understanding of counter-insurgency campaigns. It is not clear how we adapt our campaign planning to combinations of the two. What is the center of gravity in such conflicts, and does it invalidate our emphasis on whole-of-government approaches and lines of operations?

Success in hybrid wars also requires small unit leaders with decisionmaking skills and tactical cunning to respond to the unknown—and the equipment sets to react or adapt faster than tomorrow’s foe. Organizational learning and adaptation would be at a premium, as would extensive investment in diverse educational experiences.21 What institutional mechanisms do we need to be more adaptive, and what impediments does our centralized—if not sclerotic—Defense Department generate that must be jettisoned?

The greatest implications will involve force protection, as the proliferation of IEDs suggests. Our enemies will focus on winning the mobility-countermobility challenge to limit our freedom of action and separate us from close proximity to the civilian population. The ability of hybrid challenges to exploit the range and precision of various types of missiles, mortar rounds, and mines will increase over time and impede our plans. Our freedom of action and ability to isolate future opponents from civilian populations are suspect.

The exploitation of modern information technology will also enhance the learning cycle of potential irregular enemies, improving their ability to transfer lessons learned and techniques from one theater to another. This accelerated learning cycle has already been seen in Iraq and Afghanistan, as insurgents appeared to acquire and effectively employ tactical techniques or adapt novel detonation devices found on the Internet or observed from a different source. These opponents will remain elusive, operate in an extremely distributed manner, and reflect a high degree of opportunistic learning.

The U.S. military and indeed the armed forces of the West must adapt as well. As one Australian officer put it, unless we adapt to today’s protean adversary and the merging modes of human conflict, “we are destined to maintain and upgrade our high-end, industrial age square pegs and be condemned for trying to force them into contemporary and increasingly complex round holes.”22

DOD recognizes the need for fresh thinking and has begun exploring the nature of this mixed challenge. An ongoing research project, including a series of joint wargaming exercises, has been initiated by the Office of the Secretary of Defense. U.S. Joint Forces Command is exploring the implications as well, and the
Marines are doing the same. But the challenge affects all the Services, not just ground forces. Hizballah’s use of long-range missiles, armed unmanned aerial vehicles, and antiship cruise missiles should be a warning to the whole joint community. The maritime Services understand this and reflected the new challenge in the national maritime strategy: “Conflicts are increasingly characterized by a hybrid blend of traditional and irregular tactics, decentralized planning and execution, and non-state actors, using both simple and sophisticated technologies in innovative ways.”

Tomorrow’s conflicts will not be easily categorized into conventional or irregular. The emerging character of conflict is more complicated than that. A binary choice of big and conventional versus small or irregular is too simplistic. The United States cannot imagine all future threats as state-based and completely conventional, nor should it assume that state-based conflict has passed into history’s dustbin. Many have made that mistake before. State-based conflict is less likely, but it is not extinct. But neither should we assume that all state-based warfare will be entirely conventional. As this article suggests, the future poses combinations and mergers of the various methods available to our antagonists.

Numerous security analysts have acknowledged the blurring of lines between modes of war. Hybrid challengers have passed from a concept to a reality, thanks to Hizballah. A growing number of analysts in Washington realize that the debate about preparing for counterinsurgency or stability operations versus big wars is a false argument. Such a debate leads to erroneous conclusions about future demands for the joint warfighting community. Scholars at the Naval War College in Newport, Rhode Island, and at King’s College, London, endorsed the concept. Max Boot concluded his lengthy study of war and technology with the observation that

The boundaries between “regular” and “irregular” warfare are blurring. Even non-state groups are increasingly gaining access to the kinds of weapons that were once the exclusive preserve of states. And even states will increasingly turn to unconventional strategies to blunt the impact of American power.

This should widen our lens about the future joint operating environment. Yet our focus remains on an outmoded and dated bifurcation of war forms, and this orientation overlooks the most likely and potentially the most dangerous of combinations. One pair of respected strategists has concluded that “hybrid warfare will be a defining feature of the future security environment.” If true, we face a wider and more difficult range of threats than many in the Pentagon are thinking about. As today’s Spartans, we will have to take the enemy’s plans into consideration and adapt into a more multidimensional or joint force as Sparta ultimately did.

Today’s strategists need to remember the frustrated Spartans outside Athens’ long wall and remember the bloody success of the British, Russians, and Israelis in their long wars against hybrid threats—and prepare accordingly.

NOTES

5 Countering Irregular Activity Within a Comprehensive Approach, Joint Doctrine Note 2/07, United Kingdom, March 2007, 1–15.
7 John Arquilla, “The End of War As We Knew It,” Third World Quarterly 28, no. 2 (March 2007), 369.
10 Thomas Huber, Compound Wars: The Fatal Knot (Fort Leavenworth, KS: Command and General Staff College, 1996).
18 Russell W. Glenn, All Glory Is Fleeting: Insights from the Second Lebanon War (Santa Monica, CA: RAND, 2008), 73.
19 Arquilla, 369.
Since the mid-1990s, a systems (or systemic) approach to warfare emerged gradually as the dominant school of thought in the U.S. military, most other Western militaries, and the North Atlantic Treaty Organization (NATO). This was exemplified by the wide and almost uncritical acceptance, not only in the United States but also in other militaries, of the claims by numerous proponents of the need to adopt network-centric warfare (NCW), effects-based operations (EBO), and most recently a systemic operational design (SOD). Yet little if any attention was given to some rather serious flaws in the theoretical foundations of various systems approaches to warfare. Classical military thought was declared unable to satisfy the requirements of the new environment that emerged in the aftermath of the Cold War and the advent of advanced information technologies and increasingly lethal and precise long-range weapons. Carl von Clausewitz’s (1780–1831) ideas on the nature of war were ignored. Yet U.S. and NATO experiences in the recent conflicts in Afghanistan and Iraq, and the Israeli experience in the second Lebanon war in 2006, have revealed not only serious limitations but also important flaws in the practical application of the systems view of war. These conflicts have shown the timeless value of the Clausewitzian view of warfare. The future might well show that most efforts and resources spent on adopting a systems view of warfare were essentially wasted.

Never neglect the psychological, cultural, political, and human dimensions of warfare, which is inevitably tragic, inefficient, and uncertain. Be skeptical of systems analysis, computer models, game theories, or doctrines that suggest otherwise.

—Secretary of Defense
Robert Gates’
The Roots

The military application of a systems\(^2\) approach to planning can be traced to the 1930s when U.S. Army Air Corps planners at the Air Corps Tactical School in Langley, Virginia, developed the theory of strategic bombing. U.S. airpower theorists believed that the main threads of the enemy economy could be identified and evaluated prior to the outburst of hostilities. This so-called industrial web theory focused on those critical industries upon which significant portions of an enemy war economy relied.\(^3\) The intent was to use a systems approach to generate cascading effects that would lead to the collapse of the enemy’s economy. The ultimate aim was to reduce the enemy’s will to resist and force him to cease fighting. According to this view, the proper application of industrial web theory would ensure rapid and decisive victory.\(^4\)

Industrial web theory was applied on a large scale during World War II in the strategic bombing of Germany, German-occupied Europe, and Japan. However, the actual results were far below expectations in terms of material and time expended. Germany’s industrial infrastructure proved resilient and extremely adaptable, and civilian morale did not collapse, as widely anticipated by airpower proponents. Some 5 years of strategic bombing destroyed entire cities, killed hundreds of thousands of civilians, curtailed industrial output, and crippled transportation nodes. Yet despite the enormous effect, such effects-based operations failed to render a strategic decision.\(^5\)

The impetus toward adopting an effects-based approach came in the aftermath of the Vietnam War (1965–1975). Then, the U.S. military emphasized the need to link objectives at all levels of war—from the national political level to the tactical—in a logical and causal chain. In their interpretation, this outcome-based or strategy-to-task approach became the basis for joint planning. The Air Force firmly believed that its targeteering approach to warfare could somehow be applied at all levels of war. The most vocal proponents of airpower claimed that advances in information technologies and the precision and lethality of weapons allowed the use of those weapons against complex systems and in a way that was more sophisticated than previously. Another reason for the reemergence of the effects-based approach was the political and social pressure to reduce the costs of military operations and wage war with the fewest losses of human lives for the friendly (and often the enemy) side.\(^6\) Such beliefs gained increasing influence, not only within the Air Force but also among the highest U.S. political and military leadership.

The theoretical foundation of effects-based warfare was provided in 1993 in the writings of Colonel John Warden III, USAF, and his theory of strategic paralysis. Warden depicted the enemy as a system of systems.\(^7\) He also pointed out the relative nature of effects within the enemy system.\(^8\) In Warden’s view, to think strategically was to view the enemy as a “system” composed of numerous subsystems.\(^9\) He contended that all systems are similarly organized, need information to function, are resistant to change, and do not instantly react to the force applied against them (the hysteresis effect).\(^10\)

The essence of Warden’s systems approach is the Five Ring Model. He argued that any modern state, business organization, military, terrorist organization, or criminal gang can be seen as consisting of a system of five interrelated rings that enable it to perform its intended function.\(^11\) All systems are arranged in the same way:

- “leadership” elements provide general direction
- “processes” (formerly called “organic essentials”) elements convert energy from one ring to another
- “physical infrastructure” elements
- “population” elements
- “agents” (formerly called “fielded forces”) elements, consisting of demographic groups.\(^12\)

Warden also applied his model to the operational level of war. The only difference is that each of the rings pertains directly to military sources of power. For example, the leadership ring consists of the enemy’s commander plus the command, control, and communications systems. The processes ring also includes military logistics. The infrastructure ring includes roads, rails, communications lines, and pipelines. The fifth ring is the enemy’s forces—troops, ships, and aircraft—and is the hardest to reduce. Warden asserted that any campaign focused on the fifth ring would be the longest and bloodiest for both sides. Yet he acknowledged that sometimes it is necessary to concentrate on the fifth ring to reduce it to some extent in order to reach inner operational or strategic rings.\(^13\) The Air Force gradually embraced Warden’s model.\(^14\)

Systems View of the Military Situation

EBO advocates have a radically different view of analyzing the military situation from proponents of the traditional approach based on the commander’s estimate (or appreciation) of the situation. Proponents of EBO insist that the best way to visualize the military situation is to evaluate what they call a “system of systems.” The latter is, in its essence, a variation of the Five Ring Model. In an oddly worded construct, they define system of systems as “a grouping of organized assemblies of resources, methods, and procedures regulated by interaction or interdependence to accomplish a set of specific functions.”\(^15\) Both Joint Publication (JP) 3–0, Joint Operations (2006), and JP 5–0, Joint Operation Planning (2006), embraced the system perspective in analyzing situations. A system of systems is an integral part of what EBO proponents call the “operational environment.” The latter, in turn, is composed of “air, land, sea, space, and associated adversary, friendly, and neutral systems, which are relevant for specific joint operations.”\(^16\)

A system of systems analysis (SoSA) is used as the bedrock for EBO planning. It is divided into six major systems: political, military, economic, social, infrastructure, and information.\(^17\) Each of these systems, in turn, is broken down and reduced to two primary sets of elements: nodes (actually decisive points) and links. Nodes are tangible elements (persons, places, or physical things) within a system that can be “targeted.” Links, in contrast, are the physical, functional, or behavioral relationships between nodes.\(^18\) SoSA identifies the relationships between nodes within individual systems and across systems. Analysts also link nodes to each other with sufficient detail and then determine key nodes—defined as those “related to strategic or operational effect or a center of gravity.” Some nodes may become decisive points for military operations when acted upon.\(^19\) EBO

Dr. Milan N. Vego is Professor of Operations in the Joint Military Operations Department at the Naval War College.
proponents confuse the true meanings of effects, centers of gravity, and decisive points. SoSA produces a nodal analysis that, together with effects development, forms the basis for coupling nodes to effects, actions (called tasks in the traditional military decision-making and planning process) to nodes, and resources to establish effects-nodes-action linkages. The nodes and associated links are then targeted for diplomatic, informational, military, and economic (DIME) actions to influence or change system behavior and capabilities and thereby accomplish desired objectives. Lethal or nonlethal power and other instruments of national power are employed to affect links in order to attain operational and strategic effects. The aim is to create effects within the enemy’s system such as blindness, decapitation, and the sense of pursuit, thereby bringing about a state of strategic paralysis, collapse, and ultimately accomplishing the ambitious mission for subordinate units. For example, the orders issued to the Israeli 91st Division during the second Lebanon war in 2006 (Operation Change of Direction) directed them to carry out “swarmed, multi-dimensional, and simultaneous attacks” instead of stating clearly what the mission was. Already in 2004, the Israelis found out that in order to stop the launching of rockets into Israeli territory, it was necessary to affect enemy capabilities rather than consciousness. During the second Lebanon war, so-called leverage and effects against Hizballah proved dismayingly ineffective to bring the organization “to acknowledge its bad condition” within a few days after the conflict started.

Another variant of the systems approach that unfortunately got some traction in the U.S. Army, so-called systemic operational design, also looks at the situation from the systems perspective. This concept originated in the Israel Defense Forces Operational Theory Research Institute in the mid-1990s. The genesis for SOD theory was found within Soviet operational thought. Another major influence on the development of this concept was the thinking of several (mostly left-leaning) French postmodern philosophers, especially Gilles Deleuze (1925–1995) and Félix Guattari (1930–1992). Proponents explain that systemic operational design was developed as an alternative to the Western teleological approach, while operational design is based on epistemology.

In contrast to EBO advocates, SOD advocates acknowledge that uncertainty is an attribute of complex adaptive systems, such as war. They addressed that problem by employing what they call continuous systems reframing—an awkward term—which tradi-

EBO enthusiasts do not make clear who has the authority and responsibility to plan and execute DIME actions
in hierarchical organizations and in situations where compliance is more important than time-consuming discourse. In their view, IPB is insufficient for operational planning in the contemporary operational environment. SOD proponents argue that the operational level deals with more than just the physical enemy; it draws on concepts and abstractions. However, IPB properly understood and applied is not what systems proponents claim it to be; in fact, it is just the opposite. IPB encompasses a comprehensive analysis of the situation regardless of the level of war. Properly understood, it includes the evaluation of neither military nor nonmilitary aspects of the situation.

Systems vs. Operational Thinking

Systems thinking has been developed to provide techniques for studying systems in a holistic way to supplement the traditional reductionist method. The principle of analytical reduction characterizing the Western intellectual tradition came from René Descartes (1596–1650). This type of analysis is the process of identifying the simple nature in complex phenomena and dividing each problem into as many parts as possible to best solve it. Experience has shown that reductive analysis is the most successful explanatory technique ever used in science.

Systems thinking approaches a system in a holistic manner. The system is understood by examining the linkages and interactions between the elements that compose the entirety of the system. Systems thinking attempts to illustrate that events are separated by distance and time and that small catalytic events can cause large changes in complex systems. Supposedly, it contrasts traditional analysis, which studies systems by breaking them down into separate elements. Systems thinking provides a framework where mental models can be built, relationships between systems components can be uncovered, and patterns of behavior can be determined. Both the relationships within the system and the factors that influence them enable the construction and understanding of the underlying system logic. Proponents claim that systems thinking views a system from the broad perspective that includes seeing its structure, patterns, and cycles rather than seeing individual events. The component parts of a system can best be understood in the context of relationships with each other and with other systems, rather than in isolation.

The systems perspective in analyzing a military situation is actually reductionist and overly simplistic. Systems do not behave exactly as individual components, or even as a quantitative sum of individuals; the general performance and function of a system usually produce results considerably different from that of the arithmetical-linear summation of results of the individual ingredients that compose it. Advocates of the systems approach seek scientific certainties and rationality where uncertainty, chaos, and irrationality abound. They assume that all elements of the situation can somehow be precisely determined and no mistakes will be made. The enemy is essentially passive and will behave war, the more complex the interplay is among various intangible elements. Both the tangible and intangible elements of the situation include military and nonmilitary sources of power. The tangible elements are for the most part measurable in some way. Despite the widely held belief that tangible elements can be quantified, this is not always the case. The tangible and intangible elements are usually mixed and cannot be neatly separated. This is especially true in the case of forces employed at operational and strategic levels. Tangible factors can be properly or improperly evaluated, they can change over time, and they can be intentionally or inadvertently reported erroneously. They can be wrongly understood in a way that will ensure friendly success. This view of warfare is overly simplistic because it does not accommodate the Clausewitzian factors of the friction and fog of war and the role of psychological factors in warfare.

A more serious problem is that proponents of the systems approach ignore the fact that the tangible and intangible elements of the situation cannot simply be reduced to nodes and links. The human factor is the key element in analyzing the situation at any level of war, but especially at the strategic and operational levels, that is, those levels at which a war is won or lost. The higher the level of because of fear, hate, lack of confidence, fatigue, and stress.

Tangible elements can also be falsely evaluated. For example, the number or size of enemy forces or weapons/equipment might be accurately observed but falsely reported or evaluated without a context. Information received might be accurate but wrongly interpreted by commanders and staffs. This can occur intentionally or unintentionally. It can be caused by incompetence, lack of operations security, or treason. The commander can falsely evaluate the enemy’s capabilities or intentions. Misunderstandings between commanders
and subordinates are frequent occurrences in combat; they cannot be predicted or quantified. The breakdown of weapons or technical equipment can occur at any time. The effects of atmospheric influences cannot usually be measured precisely. Except in rare cases, natural events cannot be predicted in a timely fashion. Hence, the unreliability of humans and technology considerably affects performance on both sides in a conflict. The boundaries between tangible and intangible factors are in the realm of chance and are fluid.\(^3\)

In contrast to tangibles, intangibles are hard or even impossible to quantify with precision. Intangibles pertain for the most part to human elements. Some of these, such as cohesion of an alliance/coalition, public support for war, morale and discipline, and unit cohesion, can be evaluated in very broad terms: low, medium, high, or excellent. Other intangible elements—such as leadership, will to fight, small-unit cohesion, combat motivation, and doctrine—are extremely difficult to quantify with any degree of precision or confidence. At the strategic level, the quality of the enemy’s highest political and military leadership and its future intentions and reactions are difficult, if not impossible, to evaluate and even less so to predict with confidence. The enemy’s leadership can make decisions that are perceived as slightly or grossly irrational.

The traditional way of military thinking is not only far more comprehensive but also far more realistic, dynamic, and flexible than systems thinking. It avoids all the pitfalls associated with viewing a war through systems-of-systems prisms. One of the principal requirements for success at the operational and strategic levels of command is to think broadly and have a panoramic vision.\(^3\) Operational thinking is not identical to what information warfare advocates call situational awareness—a term used in training pilots; strictly defined, situational awareness refers to the degree of accuracy with which one’s perception of the current environment mirrors reality. Situational awareness does not necessarily mean an understanding; it is purely a tactical, not operational or strategic, term. The extensive use of the term situational awareness in the U.S. and other militaries is perhaps one of the best proofs of the predominance of a narrow tactical perspective among information warfare advocates.

The commander’s ability to think operationally, or what the Germans call operational thinking (operatives Denken), is usually not an innate trait but is acquired and nurtured for many years prior to assuming a position of responsibility at the operational level. The requirement to think operationally has been recognized by many theorists and practitioners of operational warfare. For example, the Prussian general Gerhard Johann David von Scharnhorst (1755–1813) observed that “one has to see the whole before seeing its parts. This is really the first rule, and its correctness can be learned from a study of history.”\(^3\) Clausewitz wrote that “small things always depend on great ones—the unimportant on the important, and accidentals on essentials; this must guide our approach.”\(^3\) Helmuth von Moltke, Sr. (1800–1891), the Prussian and German Chief of General Staff (1857–1888), wrote, “All individual successes achieved through the courage of our [German] troops on the battlefield are useless if not guided by great thoughts and directed by the purpose of the campaign and the war as a whole.”\(^3\) He believed that “it is far more important that the high commander retain a clear perspective of the entire state of affairs than that any detail is carried out in a particular way.”\(^3\)

Operational thinking is a result of considerable conscious effort on the part of the commander, in both peacetime and combat. Although operational thinking is one of the most critical factors for success, whether in peacetime or time of war, many operational commanders have remained essentially captives of their narrow tactical perspective. To think tactically is easy; it is an area in which all commanders feel comfortable because this is what they have done for most of their professional careers. History provides numerous examples in which a commander’s inability or unwillingness to think broadly and far ahead resulted in major setbacks, or even in the failure of a campaign or major operation.

A commander thinks operationally when he possesses an operational rather than tactical perspective in exercising his numerous responsibilities, both in peacetime and in war. In purely spatial terms, the operational perspective encompasses the (formally declared or undeclared) theater of operations plus an arbitrarily defined area of interest. The perspective of a tactical commander is much smaller because he is focused on planning and executing actions aimed at accomplishing tactical objectives in a given combat zone or area of operations. The broadest perspective is required at the military and theater-strategic levels of command. Among other things, the strategic perspective requires the commander’s ability to translate objectives of national policy and strategy into achievable military or theater-
strategic objectives and then to orchestrate the use of military and nonmilitary sources of power to achieve them. The tactical commander is normally not concerned with using nonmilitary sources of power, but operational and strategic commanders are. However, the exception to this is operations short of war, such as the posthostilities phase of a campaign and low-intensity conflicts, where nonmilitary aspects of the situation play an important role at all levels of war.

Operational commanders cannot be highly successful without having full knowledge and understanding of the mutual interrelationships and linkage between strategy and policy on one hand, and strategy, operational art, and tactics on the other. They should fully understand the distinctions among the levels of war and how decisions and actions at one level affect events at others. In sequencing and synchronizing the use of military and nonmilitary sources of power, operational commanders must have the ability to focus on the big picture and not be sidetracked by minor or unrelated events.

An operational commander should also possess extensive knowledge and understanding of nonmilitary aspects of the situation in his theater. In contrast to the tactical commander, the operational commander has to properly sequence and synchronize the employment of all sources of power in the conduct of a campaign or major operation. Sound operational decisions must be made, although the knowledge and understanding of some elements of the situation are far from satisfactory and uncertainties abound. There is greater uncertainty for the operational commander than for a tactical commander in terms of space, time, and forces. Generally, a commander can more accurately measure the risks of an action or nonaction at the tactical than at the operational level.49

The operational commander has to properly balance the factors of space, time, and forces against a given strategic or operational objective; otherwise, he might fail in accomplishing the ultimate objective of a campaign or major operation. Because of the greater scale of the objectives, this process is much more difficult and time consuming than at the tactical level of command. In general, the larger the scope of the military objective is, the more the uncertainties that fall within the commander’s estimate of the situation. The operational commander must have an uncanny ability to anticipate the enemy’s reaction to his own actions and then make decisions to respond to the enemy’s actions.

In contrast to a tactical commander, an operational commander needs to evaluate the features of the physical environment in operational rather than tactical terms. This means, among other things, assessing characteristics of geography, hydrography, and oceanography in terms of their effect on the course and outcome of a major operation and campaign, not on battles and engagements or some other tactical actions. The operational commander is also far more concerned with the effects of climate, rather than weather, on the employment of multiservice/multinational forces in a given part of the theater.

Thinking operationally means that the operational commander clearly sees how each of his decisions contributes to the ultimate strategic or operational objective. All the actions of the operational commander should be made within the given operational or strategic framework; otherwise, they will not contribute to ultimate success and might actually undermine it. As in a game of chess, the player who views the board as a single interrelated plane of action, with each move as a prelude to a series of further moves, is more likely to be successful than an opponent who thinks only a single move at a time. The operational commander should think how to create opportunities for employing his forces while at the same time reducing the enemy’s future options.50 One of the most important attributes of a higher commander is the ability to see the situation through the enemy’s eyes—what Napoleon called “seeing the other side of the hill.” Largely, this ability is intuitive. Napoleon I and some other successful military leaders had an extraordinary ability to visualize what the enemy’s commander would do in countering the movements of their own forces.40

A commander thinks operationally when he looks beyond the domain of physical combat and into the future. The greater one’s sphere of command, the further ahead one should think.41 By correctly anticipating the enemy’s reaction to his own actions, the operational commander can make a sound and timely decision, counteract, and then prepare to make another decision to respond to the enemy’s counteraction. The key to success is to operate within the enemy’s decision cycle. Without this ability, the operational commander cannot seize and maintain the initiative—and without the initiative, his freedom of action will be restricted by the opponent.

The operational commander should also have the ability to evaluate the impact of new and future technologies on the conduct of operational warfare. He must not focus on specific weapons or weapon platforms and sensors but should anticipate the influence these will have on the conduct of campaigns or major operations when used in large numbers. Moltke was one such rare individual who understood the impact that the technological advances of his era, specifically the railroad and telegraph, would have on the conduct of war and campaigns. He emphasized the importance of railways in the movement of troops, especially in the mobilization and deployment phase of a campaign. He directed the drafting of the first mobilization plan and movement tables in 1859. He also paid attention to the analysis of military technological advances.42 Field Marshal Alfred von Schlieffen (1833–1913) showed great enthusiasm for adopting new technologies. However, in contrast to Moltke, he lacked proper vision where future technical developments were concerned.43

Closely linked to operational thinking is the commander’s operational vision—that is, the ability to correctly envision the military conditions that will exist after the mission is accomplished. Operational vision is the practical application of operational thinking in planning, preparing, and executing a campaign or major operation. Hence, it is inherently narrower in its scope than operational thinking. In terms of time, it is also limited to the anticipated duration of a campaign or major operation. The commander’s operational vision is expressed in his intent transmitted to subordinate tactical commanders. It is critical for success that the operational commander imparts his personal vision of victory and the conditions and methods for obtaining it to all subordinates. The commander’s vision thinking operationally means the operational commander sees how each of his decisions contributes to the ultimate strategic or operational objective.
is a combination of his personality traits, education and training, and experience. In general, the higher the level of command, the further into the future the commander must look to achieve and consolidate the desired combat success. And the larger the scope of the military objective, the more complex the situation and more difficult it is to correctly envision the military endstate and the unfolding of events leading to it.

Systems vs. Clausewitzian View of War

All the proponents of the systems approach, regardless of their differences, essentially share the mechanistic or Newtonian view of warfare. They believe that the information age is so different that the classical theory of war as explained by Clausewitz has become irrelevant. They clearly confuse the distinctions between the nature of war and character of war. Nature of war refers to constant, universal, and inherent qualities that ultimately define war throughout the ages, such as violence, chance, luck, friction, and uncertainty. Hence, the nature of war is timeless regardless of the changes in the political environment, the cause of a war, or technological advances. Character of war refers to those transitory, circumstantial, and adaptive features that account for the different periods of warfare. They are primarily determined by sociopolitical and historical conditions in a certain era as well as technological advances. Systems approach advocates firmly believe that technology is the most important factor affecting both the nature and character of war. They view war as an open, distributed, nonlinear, and dynamic system. It is highly sensitive to initial conditions. It is characterized by complex hierarchical systems of feedback loops. Some of the loops are designed but others are not. Feedback results are invariably nonlinear.

The Newtonian view of the world is that of a giant machine. Everything runs smoothly, precisely, and predictably. Everything is measurable. Systems approach proponents suggest that all problems in warfare can be easily resolved and that military operations are immune to perturbations from their wider environment. All that is needed is for one’s military machine to operate at peak efficiency; then victory is ensured. The neo-Newtonians believe the outcome of a war can be predicted. Hence, they put an extraordinary emphasis on quantifiable methods in measuring the progress and outcome of combat. They offer a clean concept of warfare, believing that a direct link can be established between cause and effect. Small causes lead to minor results, while decisive outcomes require massive inputs. The proportional connection can be established between each cause and effect. War is considered a one-sided problem rather than an interaction between two animate forces. The enemy’s actions or reactions can essentially be disregarded. In fact, because the enemy cannot be controlled, he is not considered a factor at all. The neo-Newtonians acknowledge that uncertainties and friction existed in past wars. However, they contend that fog of war and friction in combat were caused by the inability to acquire and transmit information in real or near-real time. Friction can be reduced to manageable levels by deploying a vast array of sensors and computers netted together.

A systems approach to warfare is not much different from the failed “geometrical” or “mathematical” school that dominated military thinking in Europe in the late 18th century, which Clausewitz vehemently opposed. Contrary to the views of many EBO proponents, the Newtonian view of the world is that everything runs smoothly, precisely, and predictably.

The Prussian did not embrace the systems view of warfare. In fact, he ridiculed thinkers such as Dietrich Heinrich von Buelow (1757–1807), one of the leaders of the mathematical school, who took all moral values out of the theory and dealt only with materiel, reducing all warfare to a pair of mathematical equations of balance and superiority in time and space, and a pair of angles and lines. Clausewitz was against any dogmatic way of thinking. Among other things, he commented that efforts were made to equip in order to conduct war with principles, rules, or even systems. The conduct of war in his view branches out in all directions and has no definite limits. Thus, “an irreconcilable conflict exists between this type of theory and actual practice.”

Clausewitz insisted that the outcome of any war cannot be predicted with certainty because so many intangible elements come into play. The art of war deals with living and moral forces. Thus, it cannot attain the absolute and must always leave a margin for uncertainty. The greater the gap between uncertainty on one hand, and courage and self-confidence on the other, the greater the margin left for accidents.

Clausewitz wrote that war is not the action of a living force upon a lifeless mass but the collision of two living forces. The enemy has his own will and can thus react unpredictably and even irrationally. Systems approach enthusiasts seem unaware that the timing and scope of irrationality cannot be predicted or measured. It is simply unknowable. Yet irrational decisions on either side can have significant consequences on both a course and an outcome. In general, one can presume that rational actors in a war make rational and proper choices when confronted with competing alternatives, each having a cost and payoff that are known or available to the actors. However, the pervasive uncertainty in any war, the role of chance and pure luck, and the enemy’s independent will and actions make rationality in the conduct of war a highly unrealistic expectation. A rational calculus, after all, is based on the notion that nations fight wars in pursuit of postwar objectives whose benefits exceed their cost. Benefits and costs are weighed throughout the war, and once the expenditures of effort exceed the scale of the political objective, the objective must be renounced and peace will follow. The rationality of decisionmaking presupposes each side knows exactly what the changing objectives of the other side are and what those objectives are worth in effort and sacrifice. They each also have all the necessary information to evaluate the other side’s intent to continue or cease fighting. Thus, one side or the other can precisely calculate the enemy’s relative current and future strengths.

Also, one or both sides can identify and compare the anticipated costs of all available options. Systems approach proponents acknowledge that war is rarely at equilibrium because of the combined influences from the physical environment and such intangible factors as politics, leadership, and information. They also acknowledge the effect of friction, fatigue, loss of morale, and poor leadership. Yet they seemingly do not realize that the systems approach cannot predict, much less correctly measure, combined effects of friction, uncertainty, danger, fear, chance, and luck in the conduct of war. Clausewitz wrote that friction is the only concept that “more or less corresponds to the factors that distinguish real war from war on the paper.” In his view, “Actions in a war are like movement in a resistant element; in war it is difficult for normal
efforts to achieve even moderate results.60 Friction consists of the infinite number of unforeseen things, large and small, that interfere with all activities in war.61 It encompasses uncertainties, errors, accidents, technical difficulties, and the unforeseen, and their effects on decisions, morale, and actions.62 Clausewitz wrote that the military machine is basically simple and therefore easy to manage. Yet it is composed of many parts, and each part is composed of individuals. Each of these has the potential to generate friction. The ever-present factor of danger, combined with the physical exertions that war demands, compounds the problem. Friction is the factor that makes the apparently easy things in warfare so difficult.63 Clausewitz wrote that the most serious source of friction in war is the difficulty of accurate recognition. This, in turn, makes things appear entirely different from what one expected. He also emphasized that despite difficulties, uncertainties in a situation can be reduced if not even eliminated. The factor of friction can be mastered. One can easily agree that systems theories can be successfully applied in analyzing many aspects of human activities—for example, the economy, business, organizations, and political system. However, it is a quite a stretch to apply such theory to warfare. War is not economic activity, and it is not a business (as it is widely believed to be in the U.S. military and elsewhere). No other human activity even distantly approaches war in complexity and unpredictability.

One can disagree with many ideas espoused by Clausewitz 180 years ago. Yet despite the passage of the time, his views on the nature of war, the relationship between policy and strategy, and the importance of moral and psychological factors in warfare are as valid today as they were then. Warfare has remained a domain full of uncertainties, friction, chance, luck, fear, danger, and irrationality. No advances in technology will ever change that. Finally, any new or emerging military theory, including the systems approach to warfare, must fully meet the test of reality. And if the theory conflicts with reality, then it must be modified, radically changed, or abandoned. \textit{JFQ}

\textbf{NOTES}

3 Cited in Rinaldi, 1.
7 Cheek, 74.
9 Christopher Bence, \"Warden vs. Peac\", \textit{Air & Space Power Chronicles}, February 28, 2000, 2.
12 Warden uses this term now because he subsequently applied his model to the business world; the term agent, in his view, has a broader meaning and is somewhat preferable to fielded forces. See John A. Warden III, \"Strategy and System Thinking,\" \textit{Air Power Revue der Schweizer Armee}, no. 3, addendum to AllgemeineSchweizerische Militaerische Zeitschrift, December 12, 2004, 19–20.
19 Ibid., II–3.
20 Ibid.
21 Ron Tira, \textit{The Limitations of Standoff Firepower-Based Operations: On Standoff Warfare, Maneuver, and Decision} (Tel Aviv: Institute for National Strategic Studies, March 2007), 11–12.
22 Tim Challans, \"Emerging Doctrine and the Ethics of Warfare,\" presentation to the Joint Services
Conference on Professional Ethics, 2006, School of Advanced Military Studies, Fort Leavenworth, KS.

36 Cited in William G. Cummings, Operational Design Doctrine: Hamstrung or Footloose in the Contemporary Operating Environment (Toronto: Canadian Forces College, April 30, 2007), 74.

38 Davison, 51

39 Ibid., 11.

46 Hanisch, “Motto.”

46 Ibid.

47 Ibid., 219–224, 228.

48 Ibid.

50 Clausewitz, Von Kriefe, 137, 244–245.

53 Clausewitz, On War, 97.

54 Cheek, 88.

56 Clausewitz, On War, 92.

58 Schmitt.

59 Clausewitz, On War, 138.

60 Ibid., 139.

63 Ibid., 202–203.

64 Clausewitz, On War, 137, 139.

65 Ibid., 95.